HIMatrix

Safety-Related Controller

F31 03 Manual

HIMA Paul Hildebrandt GmbH + Co KG Industrial Automation All HIMA products mentioned in this manual are protected by the HIMA trade-mark. Unless noted otherwise, this also applies to other manufacturers and their respective products referred to herein.

HIMax[®], HIMatrix[®], SILworX[®], XMR[®] and FlexSILon[®] are registered trademarks of HIMA Paul Hildebrandt GmbH + Co KG.

All of the instructions and technical specifications in this manual have been written with great care and effective quality assurance measures have been implemented to ensure their validity. For questions, please contact HIMA directly. HIMA appreciates any suggestion on which information should be included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material without prior notice.

For further information, refer to the HIMA DVD and our website at http://www.hima.de and http://www.hima.com.

© Copyright 2013, HIMA Paul Hildebrandt GmbH + Co KG

All rights reserved

Contact

HIMA contact details: HIMA Paul Hildebrandt GmbH + Co KG P.O. Box 1261 68777 Brühl, Germany Phone: +49 6202 709-0 Fax: +49 6202 709-107 E-mail: info@hima.com

Revision	Revisions	Type of change		
index		technical	editorial	
1.00	First edition of the manual			
2.00	Revised: Figure 6 and Table 6 Added: F31 034, SIL 4 certified according to EN 50126, EN 50128 and EN 50129, Chapter 4.1.3	Х	Х	

Table of Contents

1	Introduction	5
1.1	Structure and Use of this Manual	5
1.2	Target Audience	5
1.3	Formatting Conventions	6
1.3.1	Safety Notes	6
1.3.2	Operating Tips	7
2	Safety	8
2.1	Intended Use	8
2.1.1	Environmental Requirements	8
2.1.2	ESD Protective Measures	8
2.2	Residual Risk	9
2.3	Safety Precautions	9
2.4	Emergency Information	9
3	Product Description	10
3.1	Safety Function	10
3.1.1	Safety-Related Digital Inputs	10
3.1.1.1	Reaction in the Event of a Fault	11
3.1.1.2	Line Control	11
3.1.2	Safety-Related Digital Outputs	12
3.1.2.1	Reaction in the Event of a Fault	12
3.2	Equipment, Scope of Delivery	13
3.2.1	IP Address and System ID (SRS)	13
3.3	Type Label	14
3.4	Structure	15
3.4.1		16
3.4.1.1 3.4.1.2	Operating Voltage LED System LEDs	16 17
3.4.1.3	Communication LEDs	18
3.4.1.4	I/O LEDs	18
3.4.2	Communication	19
3.4.2.1	Connections for Ethernet Communication	19
3.4.2.2	Network Ports Used for Ethernet Communication	20
3.4.3	Reset Key	21
3.4.4	Hardware Clock	21
3.5	Product Data	22
3.6	Certified HIMatrix F31 03	24

4	Start-up	25
4.1	Installation and Mounting	25
4.1.1	Connecting the Digital Inputs	25
4.1.1.1	Surges on Digital Inputs	26
4.1.2 4.1.3	Connecting the Digital Outputs Cable Plugs	26 27
4.2	Sequence of Events Recording (SOE)	28
4.3	Configuration with SILworX	29
4.3.1	Processor Module	29
4.3.1.1	Tab: Module	29
4.3.1.2	Tab: Routings	31
4.3.1.3	Tab: Ethernet Switch	32
4.3.1.4 4.3.1.5	Tab: VLAN (Port-Based VLAN) Tab: LLDP	32 33
4.3.1.5	Tab: Mirroring	33
4.3.2	Communication module	33
4.3.3	Parameters and Error Codes for the Inputs and Outputs	33
4.3.4	Digital Inputs for F31 03	34
4.3.4.1 4.3.4.2	Tab: Module Tab: DI 20: Channels	34 35
4.3.5	Digital Outputs for F31 03	36
4.3.5.1	Tab: Module	36
4.3.5.2	Tab: DO 8: Channels	37
5	Operation	38
5.1	Handling	38
5.2	Diagnosis	38
6	Maintenance	39
6.1	Faults	39
6.2	Maintenance Measures	39
6.2.1	Loading the Operating System	39
6.2.2	Proof Test	39
7	Decommissioning	40
8	Transport	41
9	Disposal	42
	Appendix	43
	Glossary	43
	Index of Figures	44
	Index of Tables	45
	Index	46

1 Introduction

This manual describes the technical characteristics of the device and its use. It provides information on how to install, start up and configure the module in SILworX.

1.1 Structure and Use of this Manual

The content of this manual is part of the hardware description of the HIMatrix programmable electronic system.

This manual is organized in the following main chapters:

- Introduction
- Safety
- Product Description
- Start-up
- Operation
- Maintenance
- Decommissioning
- Transport
- Disposal

Additionally, the following documents must be taken into account:

Name	Content	Document number
HIMatrix System Manual Compact Systems	Hardware description of the HIMatrix compact systems	HI 800 141 E
HIMatrix Safety Manual	Safety functions of the HIMatrix system	HI 800 023 E
HIMatrix Safety Manual for Railway Applications	Safety functions of the HIMatrix system using the HIMatrix in railway applications	HI 800 437 E
SILworX Communication Manual	Description of the communication protocols, ComUserTask and their configuration in SILworX	HI 801 101 E
SILworX Online Help	Instructions on how to use SILworX	-
SILworX First Steps	Introduction to SILworX using the HIMax system as an example	HI 801 103 E

Table 1: Additional Relevant Documents

The latest manuals can be downloaded from the HIMA website at www.hima.com. The revision index on the footer can be used to compare the current version of existing manuals with the Internet edition.

1.2 Target Audience

This document addresses system planners, configuration engineers, programmers of automation devices and personnel authorized to implement, operate and maintain the modules and systems. Specialized knowledge of safety-related automation systems is required.

1.3 Formatting Conventions

To ensure improved readability and comprehensibility, the following fonts are used in this document:

Bold	To highlight important parts. Names of buttons, menu functions and tabs that can be clicked and used in the programming tool.
Italics	For parameters and system variables
Courier	Literal user inputs
RUN	Operating state are designated by capitals
Chapter 1.2.3	Cross references are hyperlinks even though they are not particularly marked. When the cursor hovers over a hyperlink, it changes its shape. Click the hyperlink to jump to the corresponding position.

Safety notes and operating tips are particularly marked.

1.3.1 Safety Notes

The safety notes are represented as described below. These notes must absolutely be observed to reduce the risk to a minimum. The content is structured as follows:

- Signal word: warning, caution, notice
- Type and source of risk
- Consequences arising from non-observance
- Risk prevention

A SIGNAL WORD

Type and source of risk! Consequences arising from non-observance

Risk prevention

The signal words have the following meanings:

- Warning indicates hazardous situation which, if not avoided, could result in death or serious injury.
- Caution indicates hazardous situation which, if not avoided, could result in minor or modest injury.
- Notice indicates a hazardous situation which, if not avoided, could result in property damage.

NOTE

Type and source of damage! Damage prevention

F31 03	1 Introduc	ction
1.3.2	Operating Tips Additional information is structured as presented in the following example:	
i	The text corresponding to the additional information is located here.	
	Useful tips and tricks appear as follows:	

TIP The tip text is located here.

2 Safety

All safety information, notes and instructions specified in this document must be strictly observed. The product may only be used if all guidelines and safety instructions are adhered to.

This product is operated with SELV or PELV. No imminent risk results from the product itself. The use in Ex-Zone is permitted if additional measures are taken.

2.1 Intended Use

HIMatrix components are designed for assembling safety-related controller systems.

When using the components in the HIMatrix system, comply with the following general requirements.

2.1.1 Environmental Requirements

Requirement type	Range of values
Protection class	Protection class III in accordance with IEC/EN 61131-2
Ambient temperature	0+60 °C
Storage temperature	-40+85 °C
Pollution	Pollution degree II in accordance with IEC/EN 61131-2
Altitude	< 2000 m
Housing	Standard: IP20
Supply voltage	24 VDC

Table 2:Environmental Requirements

Exposing the HIMatrix system to environmental conditions other than those specified in this manual can cause the HIMatrix system to malfunction.

2.1.2 ESD Protective Measures

Only personnel with knowledge of ESD protective measures may modify or extend the system or replace devices.

NOTE

Device damage due to electrostatic discharge!

- When performing the work, make sure that the workspace is free of static, and wear an ESD wrist strap.
- If not used, ensure that the device is protected from electrostatic discharge, e.g., by storing it in its packaging.

2.2 Residual Risk

No imminent risk results from a HIMatrix system itself.

Residual risk may result from:

- Faults related to engineering
- Faults related to the user program
- Faults related to the wiring

2.3 Safety Precautions

Observe all local safety requirements and use the protective equipment required on site.

2.4 Emergency Information

A HIMatrix system is a part of the safety equipment of a site. If a device or a module fails, the system enters the safe state.

In case of emergency, no action that may prevent the HIMatrix systems from operating safely is permitted.

1

3 Product Description

The safety-related **F31 03** controller is a compact system in a metal housing with 20 digital inputs and 8 digital outputs.

The configuration is performed using SILworX, see Chapter 4.3.

The device is suitable for sequence of events recording (SOE), see Chapter 4.2. The device supports multitasking and reload. For more details, refer to the system manual compact systems (HI 800 141 E).

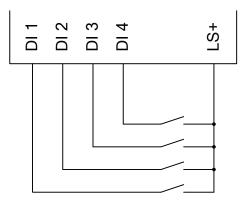
A licence is required to use the events recording, the multitasking and the reload features.

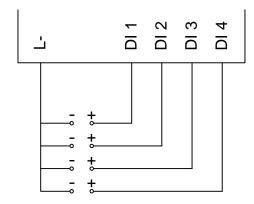
The device is TÜV-certified for safety-related applications up to SIL 3 (IEC 61508, IEC 61511 and IEC 62061), Cat. 4 and PL e (EN ISO 13849-1) and SIL 4 (EN 50126, EN 50128 and EN 50129).

Further safety standards, application standards and test standards are specified in the certificates available on the HIMA website.

3.1 Safety Function

The controller is equipped with safety-related digital inputs and outputs.


3.1.1 Safety-Related Digital Inputs


The controller is equipped with 20 digital inputs. The state (HIGH, LOW) of each input is signaled by an individual LED.

Mechanical contacts without own power supply or signal power source can be connected to the inputs.

Potential-free mechanical contacts without own power supply are fed via an internal shortcircuit-proof 24 V power source (LS+). Each of them supply a group of 4 mechanical contacts. Figure 1 shows how the connection is performed.

With signal voltage sources, the corresponding ground must be connected to the input (L-), see Figure 1.

Connection of potential-free mechanical contacts

Connection of signal power sources

Figure 1: Connections to Safety-Related Digital Inputs

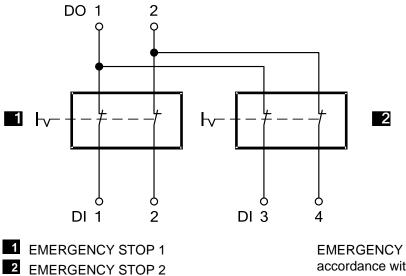
For the external wiring and the connection of sensors, apply the de-energized-to-trip principle. Thus, if a fault occurs, the input signals adopt a de-energized, safe state (low level).

If an external wire is not monitored, an open-circuit is considered as safe low level.

3.1.1.1 Reaction in the Event of a Fault

If the device detects a fault on a digital input, the user program processes a low level in accordance with the de-energized to trip principle.

The device activates the FAULT LED.


In addition to the channel signal value, the user program must also consider the corresponding error code.

The error code allows the user to configure additional fault reactions in the user program.

3.1.1.2 Line Control

Line control is used to detect short-circuits or open-circuits and can be configured for the F31 system, e.g., on EMERGENCY STOP inputs complying with Cat. 4 and PL e in accordance with EN ISO 13849-1.

To this end, connect the digital outputs DO 1 through DO 8 of the system to the digital inputs DI of the same system as follows:

EMERGENCY STOP switches in accordance with EN 60947-5-1 and EN 60947-5-5

The controller pulses the digital outputs to detect the line short-circuits and open-circuits on the lines connected to the digital inputs. To do so, configure the *Value [BOOL]* -> system variable in SILworX. The variables for the pulsed outputs must begin with channel 1 and reside in direct sequence, one after the other.

If the following faults occur, the *FAULT* LED located on the front plate of the controller blinks, the inputs are set to low level and an (evaluable) error code is created:

- Cross-circuit between two parallel wires.
- Invalid connections of two lines (e.g., DO 2 to DI 3),
- Earth fault on one wire (with earthed ground only).
- Open-circuit or open contacts, i.e., including when one of the two EMERGENCY STOP switches mentioned above has been engaged, the FAULT LED blinks and the error code is created.

3.1.2 Safety-Related Digital Outputs

The controller is equipped with 8 digital outputs. The state (HIGH, LOW) of each output is signaled by an individual LED (HIGH, LOW).

At the maximum ambient temperature, the outputs 1...3 and 5...7 can be loaded with 0.5 A each; and outputs 4 and 8 can be loaded with 1 A or with 2 A at an ambient temperature of up to 50 °C.

If an overload occurs, one or all digital outputs are switched off. If the overload is removed, the outputs are switched on again automatically, see Table 14.

The external wire of an output is not monitored, however, a detected short-circuit is signaled.

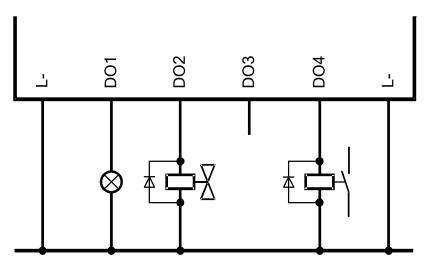


Figure 3: Connection of Actuators to Outputs

The redundant connection of two outputs must be decoupled with diodes.

ACAUTION

For connecting a load to a 1-pole switching output, use the corresponding L- ground of the respective channel group (2-pole connection) to ensure that the internal protective circuit can function.

Inductive loads may be connected with no free-wheeling diode on the actuator. However, HIMA strongly recommends connecting a protective diode directly to the actuator.

3.1.2.1 Reaction in the Event of a Fault

If the device detects a faulty signal on a digital output, the affected module output is set to the safe (de-energized) state using the safety switches.

If a device fault occurs, all digital outputs are switched off.

In both cases, the devices activates the FAULT LED.

The error code allows the user to configure additional fault reactions in the user program.

3.2 Equipment, Scope of Delivery

The following table specifies the available controller:

Designation	Description
F31 03	Controller (enhanced performance, 20 digital inputs, 8 digital outputs),
SILworX	Operating temperature: 0+60 °C,
	for SILworX programming tool

 Table 3:
 Available Controller

3.2.1 IP Address and System ID (SRS)

A transparent label is delivered with the device to allow one to note the IP addresses of the CPU and the COM and the system ID (SRS for system rack slot) after a change.

Default value for IP address of the CPU:	192.168.0.99
Default value for IP address of the COM:	192.168.0.100
Default value for SRS:	60 000.0.0

The label must be affixed such that the ventilation slots in the housing are not obstructed.

Refer to the *SILworX* First Steps manual for more information on how to modify the IP address and the system ID.

3.3 Type Label

The type plate contains the following details:

- Product name
- Bar code (1D or 2D code)
- Part no.
- Production year
- Hardware revision index (HW Rev.)
- Firmware revision index (FW Rev.)
- Operating voltage
- Mark of conformity

Figure 4: Sample Type Label

3.4 Structure

This chapter describes the layout and function of the controller, and its connection for communication.

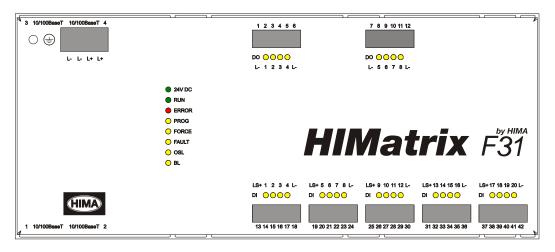
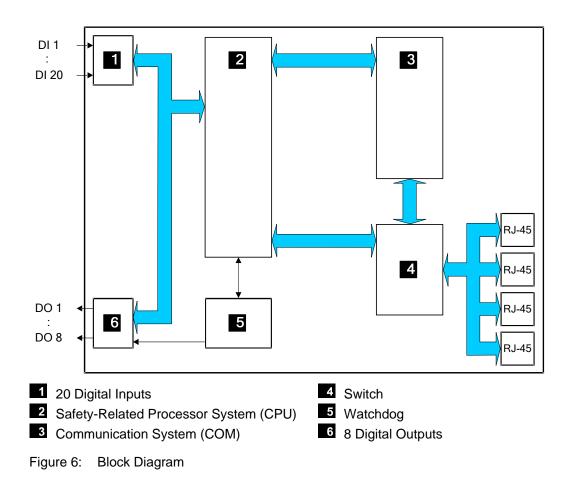



Figure 5: Front View

3.4.1 LED Indicators

The light-emitting diodes (LEDs) indicate the operating state of the controller. The LEDs are classified as follows:

- Operating voltage LED
- System LEDs
- Communication LED
- I/O LEDs

When the supply voltage is switched on, a LED test is performed and all LEDs are briefly lit.

Definition of Blinking Frequencies

The following table defines the blinking frequencies of the LEDs:

Name	Blinking frequencies	
Blinking1	Long (approx. 600 ms) on, long (approx. 600 ms) off	
Blinking-x	Ethernet communication: Blinking synchronously with data transfer	

Table 4:Blinking Frequencies of LEDs

3.4.1.1 Operating Voltage LED

The operating voltage LED does not depend on the CPU operating system in use.

LED	Color	Status	Description
24 VDC	Green	On	24 VDC operating voltage present
		Off	No operating voltage

Table 5:Operating Voltage LED

3.4.1.2 System LEDs

While the system is being booted, all LEDs are lit simultaneously.

LED	Color	Status	Description
RUN	Green	On	 Device in RUN, normal operation
			A loaded user program is being processed.
		Blinking1	Device in STOP
		0#	A new operating system is being loaded. The device is not in the PLIN or STOP state
		Off	The device is not in the RUN or STOP state.
ERR	Red	On	Missing license for additional functions (communication protocols, reload), test mode.
		Blinking1	 The device is in the ERROR STOP state. Internal module faults detected by self-tests, e.g., hardware voltage supply. The processor system can only be restarted with a command from the PADT (reboot). Fault while loading the operating system
		Off	No faults detected.
PROG	Yellow	On	 A new configuration is being loaded into the device.
PROG	Tellow		 A new operating system is being loaded. WDT or safety time change Check for duplicate IP address SRS change
		Blinking1	 Reload is being performed A duplicate IP address was detected.¹⁾ PROFINET has received an identify request.¹⁾
		Off	None of the described events occurred.
FORCE	Yellow	On	Forcing prepared: The force switch is set for a variable, the force main switch is still deactivated. The device is in the RUN or STOP state.
		Blinking1	 Forcing is active: At least one local or global variable has adopted the corresponding force value. A duplicate IP address was detected.¹⁾ PROFINET has received an identify request.¹⁾
		Off	None of the described events occurred.
FAULT	Yellow	Blinking1	 The new operating system is corrupted (after OS download). Fault while loading a new operating system The loaded configuration is not valid. At least one I/O fault has been detected. A duplicate IP address was detected.¹⁾ PROFINET has received an identify request.¹⁾
		Off	None of the described faults occurred.
OSL	Yellow	Blinking1	 Operating system emergency loader active. A duplicate IP address was detected.¹⁾ PROFINET has received an identify request.¹⁾
	<u> </u>	Off	None of the described events occurred.
BL	Yellow	Blinking1	 OS and OSL binary defective or INIT_FAIL hardware fault. Fault in the external process data communication A duplicate IP address was detected.¹⁾ PROFINET has received an identify request.¹⁾
		Off	None of the described events occurred.
¹⁾ If all th	e I FDs PF	ROG. FORCE. F.	AULT, OSL and BL are blinking simultaneously.

Table 6: System LEDs

3.4.1.3 Communication LEDs

All RJ-45 connectors are provided with a small green and a yellow LEDs. The LEDs signal the following states:

LED	Status	Description	
Green	On	Full duplex operation	
	Blinking1	IP address conflict, all communication LEDs are blinking	
	Blinking-x	Collision	
	Off	Half duplex operation, no collision	
Yellow	On	Connection available	
	Blinking1	IP address conflict, all communication LEDs are blinking	
	Blinking-x	Interface activity	
	Off	No connection available	

Table 7: Ethernet Indicators

3.4.1.4 I/O LEDs

LED	Color	Status	Description	
DI 124	<mark>Yellow</mark>	On	The related input is active (energized).	
		Off	The related input is inactive (de-energized).	
DO 18	Yellow	On	The related output is active (energized).	
		Off	The related output is inactive (de-energized).	

Table 8: I/O LEDs

3.4.2 Communication

The controller communicates with remote I/Os via safe**ethernet**. Characteristics and configuration of safe**ethernet** are described in the SILworX communication manual (HI 801 101 E).

3.4.2.1 Connections for Ethernet Communication

Property	Description	
Port	4 x RJ-45	
Transfer standard	10BASE-T/100BASE-Tx, half and full duplex	
Auto negotiation	Yes	
Auto crossover	Yes	
IP address	Freely configurable ¹⁾	
Subnet mask	Freely configurable ¹⁾	
Supported protocols	 Safety-related: safeethernet, PROFIsafe Standard protocols: Programming and debugging tool (PADT), OPC, Modbus TCP, TCP SR, SNTP, ComUserTask, PROFINET 	
¹⁾ The general rules for assigning IP address and subnet masks must be adhered to.		

 Table 9:
 Ethernet Interfaces Properties

Two RJ-45 connectors with integrated LEDs are located on the top and on the bottom left-hand side of the housing. Refer to Chapter 3.4.1.3 for a description of the LEDs' function.

The connection parameters are read based on the MAC address (media access control address) defined during manufacturing.

CPU and COM have their own MAC addresses. The CPU MAC address is specified on a label located above the two RJ-45 connectors (1 and 2).

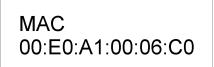


Figure 7: Sample MAC Address Label

The COM MAC address corresponds to the CPU MAC address, except for the last byte which is increased by 1.

Example:

CPU MAC address: 00:E0:A1:00:06:C0

COM MAC address: 00:E0:A1:00:06:C1

The controller is equipped with an integrated switch for Ethernet communication. For further information on the integrated switch and safe**ethernet**, refer to Chapter *Communication* of the system manual for compact systems (HI 800 141 E).

UDP ports	Use	
123	SNTP (time synchronization between PES and remote I/O, PES and external devices)	
502	Modbus salve (can be modified by the user)	
6010	safeethernet and OPC	
6005 / 6012	If TCS_DIRECT was not selected in the HH network	
8000	Programming and operation with SILworX	
8004	Configuration of the remote I/O using the PES (SILworX)	
34 964	PROFINET endpoint mapper (required for establishing the connection)	
49 152	PROFINET RPC server	
49 153	PROFINET RPC client	

3.4.2.2 Network Ports Used for Ethernet Communication

Table 10: Network Ports (UDP Ports) in Use

TCP ports	ports Use	
502	Modbus salve (can be modified by the user)	
XXX	TCP SR assigned by the user	

Table 11: Network Ports (TCP Ports) in Use

i

The ComUserTask can use any port if it is not already used by another protocol.

3.4.3 Reset Key

The controller is equipped with a reset key. The key is only required if the user name or password for administrator access is not known. If only the IP address set for the controller does not match the PADT (PC), the connection can be established with a <code>Route add</code> entry on the PC.

The key can be accessed through a small round hole located approximately 5 cm from the upper left-hand side of the housing. The key is engaged using a suitable pin made of insulating material to avoid short-circuits within the controller.

The reset is only effective if the controller is rebooted (switched off and on) while the key is simultaneously engaged for at least 20 s. Engaging the key during operation has no effect.

Properties and behavior of the controller after a reboot with engaged reset key:

- Connection parameters (IP address and system ID) are set to the default values.
- All accounts are deactivated except for the *administrator* default account with empty password.
- Loading a user program or operating system with default connection parameters is inhibited! The loading procedure is only allowed after the connection parameters and the account have been configured on the controller and the controller has been rebooted.

After a new reboot without the reset key engaged, the connection parameters (IP address and system ID) and accounts become effective.

- Those configured by the user.
- Those valid prior to rebooting with the reset key engaged, if no changes were performed.

3.4.4 Hardware Clock

In case of loss of operating voltage, the power provided by an integrated capacitor is sufficient to buffer the hardware clock for approximately one week.

3.5 Product Data

General	
Total program and data memory for all user programs	5 MB less 64 kBytes for CRCs
Response time	≥ 6 ms
Ethernet interfaces	4 x RJ-45, 10BASE-T/100BASE-Tx with integrated switch
Operating voltage	24 VDC, -15+20 %, $r_{PP} \le$ 15 %, provided by a power supply unit with safe isolation, in accordance with IEC 61131-2
Current input	max. 8 A (with maximum load) Idle: approx. 0.4 A at 24 V
Fuse (external)	10 A time-lag (T)
Buffer for date/time	Gold capacitor
Operating temperature	0+60 °C
Storage temperature	-40+85 °C
Type of protection	IP20
Max. dimensions (without connectors)	Width: 257 mm (with housing screws) Height: 114 mm (with fixing bolt) Depth: 66 mm (with earthing screw)
Weight	1.2 kg

Table 12: Product Data

Digital inputs		
Number of inputs		20 (non-galvanically separated)
High level:	Voltage	1530 VDC
	Current input	\geq 2 mA at 15 V
Low level:	Voltage	max. 5 VDC
	Current input	max. 1.5 mA (1 mA at 5 V)
Switching point		typ. 7.5 V
Supply		5 x 20 V / 100 mA (at 24 V), short-circuit-proof

Table 13: Specifications for Digital Inputs

Digital outputs			
Number of outputs	8 (non-galvanically separated)		
Output voltage	≥ L+ minus 2 V		
Output current	Channels 13 and 57: 0.5 A up to 60 °C The output current of the channels 4 and 8 depends on the ambient temperature.		
	Ambient temperature	Output current	
	< 50 °C	2 A	
	5060 °C	1 A	
Minimum load	2 mA for each channel		
Internal voltage drop	max. 2 V at 2 A		
Leakage current (with low level)	max. 1 mA at 2 V		
Behavior upon overload	The affected output is switched off and cyclically switched on again		
Total output current	max. 7 A, upon overload, all outputs a switched on again	are switched off and cyclically	

Table 14: Specifications for the Digital Outputs

3.6 Certified HIMatrix F31 03

HIMatrix F31 03	
CE	EMC
ΤÜV	IEC 61508 1-7:2010 up to SIL 3
	IEC 61511:2004
	EN ISO 13849-1:2008
	IEC 62061:2005
	EN 50156-1:2004
	EN 298:2003
	EN 230:2005
TÜV CENELEC	Railway applications
	EN 50126: 1999 up to SIL 4
	EN 50128: 2001 up to SIL 4
	EN 50129: 2003 up to SIL 4

Table 15: Certificates

Further safety standards and application standards are specified in the certificate. The certificate and the EC type test certificate are available on the HIMA website at www.hima.com.

4 Start-up

To start up the controller, it must be mounted, connected and configured in SILworX.

4.1 Installation and Mounting

The controller is mounted on a 35 mm DIN rail such as described in the system manual for compact systems.

When laying cables (long cables, in particular), take appropriate measures to avoid interference, e.g., by separating the signal lines from the power lines.

When dimensioning the cables, ensure that their electrical properties have no negative impact on the measuring circuit.

4.1.1 Connecting the Digital Inputs

Use the following terminals to connect the digital inputs:

Terminal	Designation	Function (inputs)
13	LS+	Sensor supply of the inputs 14
14	1	Digital input 1
15	2	Digital input 2
16	3	Digital input 3
17	4	Digital input 4
18	L-	Ground
Terminal	Designation	Function (inputs)
19	LS+	Sensor supply of the inputs 58
20	5	Digital input 5
21	6	Digital input 6
22	7	Digital input 7
23	8	Digital input 8
24	L-	Ground
Terminal	Designation	Function (inputs)
25	LS+	Sensor supply of the inputs 912
26	9	Digital input 9
27	10	Digital input 10
28	11	Digital input 11
29	12	Digital input 12
30	L-	Ground
Terminal	Designation	Function (inputs)
31	LS+	Sensor supply of the inputs 1316
32	13	Digital input 13
33	14	Digital input 14
34	15	Digital input 15
35	16	Digital input 16
36	L-	Ground
Terminal	Designation	Function (inputs)
37	LS+	Sensor supply of the inputs 1720
38	17	Digital input 17
39	18	Digital input 18
40	19	Digital input 19
41	20	Digital input 20
42	L-	Ground

 Table 16:
 Terminal Assignment for the Digital Inputs

4.1.1.1 Surges on Digital Inputs

Due to the short cycle time of the HIMatrix systems, a surge pulse as described in EN 61000-4-5 can be read in to the digital inputs as a short-term high level.

The following measures ensure proper operation in environments where surges may occur:

- 1. Install shielded input wires
- 2. Program noise blanking in the user program. A signal must be present for at least two cycles before it is evaluated. The fault reaction is triggered with a corresponding delay.
- 1 The measures specified above are not necessary if the plant design precludes surges from occurring within the system.

In particular, the design must include protective measures with respect to overvoltage, lightning, earth grounding and plant wiring in accordance with the relevant standards and the instructions specified in the system manual (HI 800 141 E or HI 800 191 E).

4.1.2 Connecting the Digital Outputs

Use the following terminals to connect the digital outputs:

Terminal	Designation	Function (outputs)
1	L-	Ground channel group
2	1	Digital output 1
3	2	Digital output 2
4	3	Digital output 3
5	4	Digital output 4 (for increased load)
6	L-	Ground channel group
Terminal	Designation	Function (outputs)
7	L-	Ground channel group
8	5	Digital output 5
9	6	Digital output 6
10	7	Digital output 7
11	8	Digital output 8 (for increased load)
12	L-	Ground channel group

Table 17: Terminal Assignment for the Digital Outputs

4.1.3 Cable Plugs

Cable plugs attached to the pin headers of the devices are used to connect to the power supply and to the field zone. The cable plugs are included within the scope of delivery of the HIMatrix devices and modules.

The devices power supply connections feature the following properties:

Connection to the power supply		
Cable plugs	Four poles, screw terminals	
Wire cross-section	0.22.5 mm ² (single-wire)	
	0.22.5 mm ² (finely stranded)	
	0.22.5 mm ² (with wire end ferrule)	
Stripping length	10 mm	
Screwdriver	Slotted 0.6 x 3.5 mm	
Tightening torque	0.40.5 Nm	

Table 18: Power Supply Cable Plug Properties

Connection to the field zone				
Number of cable plugs	7 pieces, six poles, screw terminals			
Wire cross-section	0.21.5 mm ² (single-wire)			
	0.21.5 mm ² (finely stranded)			
	0.21.5 mm ² (with wire end ferrule)			
Stripping length	6 mm			
Screwdriver	Slotted 0.4 x 2.5 mm			
Tightening torque	0.20.25 Nm			

 Table 19:
 Input and Output Cable Plug Properties

4.2 Sequence of Events Recording (SOE)

The global variables of the controller can be monitored using sequence of events recording. Global variables to be monitored are configured using SILworX, see the online help and the SILworX communication manual (HI 801 101 E). Up to 4000 events can be configured.

Entry data	Description			
Event ID	The event ID is assigned by the PADT.			
Timestamp	Date (e.g., 21/11/2008)			
	Time (e.g., 9:31:57.531)			
Event state	Alarm/Normal (Boolean event)			
	LL, L, N, H, HH (scalar event)			
Event quality	Quality good/ Quality bad, see www.opcfoundation.org			

An event is composed of:

Table 20: Event Description

Events are recorded within the cycle of the user program. The processor system uses global variables to create the events and stores them in its non-volatile event buffer.

The event buffer includes 1000 events. If the event buffer is full, an overflow system event entry is created. Thereafter, events are no longer recorded until existing events have been read and space is once again available in the event buffer.

4.3 Configuration with SILworX

In the Hardware Editor, the controller is represented like a base plate equipped with the following modules:

- Processor module (CPU)
- Communication module (COM)
- Input module (DI 20)
- Output module (DO 8)

Double-click the module to open the Detail View with the corresponding tabs. The tabs of the I/O modules are used to assign the global variables configured in the user program to the system variables.

4.3.1 Processor Module

The following tables present the parameters for the processor module (CPU) in the same order as given in the Hardware Editor. The tabs **Module** and **Routings** tabs for the processor module and the communication module are identical.

4.3.1.1 Tab **Module**

The **Module** tab contains the following parameters:

Parameter	Description				
Name	Module name				
Activate Max. μP Budget for HH Protocol	 Activated: Use CPU load limit from the <i>Max. µP Budget for HH</i> <i>Protocol [%]</i> field. Deactivated: Do not use the CPU Load limit for safeethernet. Default setting: Deactivated 				
Max. µP Budget for HH Protocol [%]	Maximum CPU load of module that can be used for processing the safe ethernet protocols.				
	• The maximum load must be distributed among all the implemented protocols that use this communication module.				
IP Address	IP address of the Ethernet interface.				
	Default value: 192.168.0.99				
Subnet Mask	32 bit address mask to split up the IP address in network and host address. Default value: 255.255.252.0				
Standard Interface	Activated: the interface is used as standard interface for the system login. Default setting: Deactivated				
Default Gateway	IP address of the default gateway. Default value: 0.0.00				

Parameter	Description
ARP Aging Time [s]	A processor or COM module stores the MAC addresses of the communication partners in a MAC/IP address assignment table (ARP cache).
	 If in a period of 1x2x ARP Aging Time messages of the communication are received, the MAC address remains stored in the ARP cache. no messages of the communication partner are received, the MAC address is erased from the ARP cache.
	The typical value for the <i>ARP Aging Time</i> in a local network ranges from 5300 s. The user cannot read the contents of the ARP cache.
	Range of values: 13600 s Default value: 60 s
	If routers or gateways are used, the user must adjust (increase) the <i>ARP Aging Time</i> due to the additional time required for two-way transmission.
	If the <i>ARP Aging Time</i> is too low, the processor or the COM module deletes the MAC address of the communication partner from the ARP cache and the communication is either delayed or breaks down entirely. For an efficient performance, the <i>ARP aging time</i> value must be less than the receive timeout set for the protocols in use.
MAC Learning	MAC Learning and ARP Aging Time are used to set how quick the Ethernet switch should learn the MAC address.
	 The following settings are possible: Conservative (recommended): If the ARP cache already contains MAC addresses of communication partners, these are locked and cannot be replaced by other MAC addresses for at least one <i>ARP Aging</i> <i>Time</i> and a maximum of two <i>ARP Aging Time</i> periods. This ensures that data packets cannot be intentionally or unintentionally forwarded to external network subscribers (ARP spoofing). Tolerant:
	 When a message is received, the IP address contained in the message is compared to the data in the ARP cache and the MAC address stored in the ARP cache is immediately overwritten with the MAC address from the message. The <i>Tolerant</i> setting must be used if the availability of communication is more important than the authorized access to the controller. Default setting: Conservative
IP Forwarding	Allow a processor module to operate as router and to forward data packets to other network nodes. Default setting: Deactivated

Parameter	Description			
ICMP Mode	 The Internet Control Message Protocol (ICMP) allows the higher protocol layers to detect error states on the network layer and optimize the transmission of data packets. Message types of Internet Control Message Protocol (ICMP) supported by the processor module: No ICMP Responses All the ICMP commands are deactivated. This ensures a high degree of safety against potential sabotage that might occur over the network. Echo Response is activated, the node responds to a ping command. It is thus possible to determine if a node can be reached. Safety is still high. Host Unreachable Not important for the user. Only used for testing at the manufacturer's facility. All Implemented ICMP Responses All ICMP commands are activated. This allows a more detailed diagnosis of network malfunctions. 			

Table 21: CPU and COM Configuration Parameters, Module Tab

4.3.1.2 Tab Routings

The **Routings** tab contains the routing table. This table is empty if the module is new. A maximum of 8 routing entries are possible.

Parameter	Description		
Name	Denomination of the routing settings		
IP Address	Target IP address of the communication partner (with direct host routing) or network address (with subnet routing). Range of values: 0.0.0.0255.255.255.255 Default value: 0.0.0.0		
Subnet Mask	Define the target address range for a routing entry. 255.255.255.255 (with direct host routing) or subnet mask of the addressed subnet. Range of values: 0.0.0.0255.255.255.255 Default value: 255.255.255.255		
Gateway	IP address of the gateway to the addressed network. Range of values: 0.0.0.0255.255.255.255 Default value: 0.0.0.1		

Table 22: Routing Parameters of the CPU and COM

4.3.1.3 Tab **Ethernet Switch**

The Ethernet Switch tab contains the following parameters:

Parameter	Description			
Name	Name of the port (Eth1Eth4) as printed on the housing; per port, only one configuration may exist.			
Speed [Mbit/s]	10: Data rate 10 Mbit/s			
	100: Data rate 100 Mbit/s			
	Autoneg: Automatic baud rate setting			
	Default value: Autoneg			
Flow Control	Full duplex: Simultaneous communication in both directions			
	Half duplex: Communication in one direction			
	Autoneg: Automatic communication control			
	Default value: Autoneg			
Autoneg also with Fixed Values	The <i>Advertising</i> function (forwarding the speed and flow control properties) is also performed if the parameters <i>Speed</i> and <i>Flow Control</i> have fixed values.			
	This allows other devices with ports set to <i>Autoneg</i> to recognize the HIMax port settings.			
	Default setting: Activated			
Limit	Limit the inbound multicast and/or broadcast packets.			
	Off: No limitation			
	Broadcast: Limit broadcast packets (128 kbit/s)			
	Multicast and Broadcast: Limit multicast and broadcast packets (1024 kbit/s)			
	Default value: Broadcast			

Table 23: Ethernet Switch Parameters

4.3.1.4 Tab VLAN (Port-Based VLAN)

For configuring the use of port-based VLAN.

: Should VLAN be supported, port-based VLAN should be off to enable each port to communicate with the other switch ports.

For each switch port, the user can define which other switch ports received Ethernet frames may be sent to, refer to Figure 6.

The table in the VLAN tab contains entries through which the connection between two ports can be set to active or inactive.

	Eth1	Eth2	Eth3	Eth4	СОМ
Eth1					
Eth2	Active				
Eth3	Active	Active			
Eth4	Active	Active	Active		
COM	Active	Active	Active	Active	
CPU	Active	Active	Active	Active	Active

Table 24: VLAN Tab

4.3.1.5 Tab **LLDP**

With LLDP (Link Layer Discovery Protocol), information such as MAC address, device name, port number is sent per multicast in periodic intervals via the own device and is received from the neighboring devices.

LLDP uses the following values depending on whether PROFINET is configured on the communication module.

PROFINET on the COM module	ChassisID	TTL (Time to Live)	
Used	Device name	20 s	
Not used	MAC address	120 s	

Table 25: Values for LLDP

The processor and communication modules support LLDP on the Eth1, Eth2, Eth3 and Eth4 ports

The following parameters define how a given port should work:

Off	LLDP is disabled on this port.			
Send	LLDP sends LLDP Ethernet frames, received LLDP Ethernet frames are deleted without being processed.			
Receive	LLDP sends no LLDP Ethernet frames, but received LLDP Ethernet frames are processed.			
Send/Receive	LLDP sends and processes received LLDP Ethernet frames.			

Default setting: Send/Receive

4.3.1.6 Tab **Mirroring**

Mirroring is used to configure whether the module should duplicate Ethernet packets on a given port such that they can be read from a device connected to that port, e.g., for test purposes.

The following parameters define how a given port should work:

Off	This port does not participate to the mirroring process.
Egress	Outgoing data of this port are duplicated.
Ingress/Egress	Incoming and outgoing data of this port are duplicated.
Dest Port	This port is used to send duplicated data.
Default setting: OFF	

4.3.2 Communication Module

The communication module contains the **Module** tab and the **Routings** tab. Their content is identical to those of the processor module, see Table 21 and Table 22.

4.3.3 Parameters and Error Codes for the Inputs and Outputs

The following tables specify the system parameters that can be read and set for the inputs and outputs, including the corresponding error codes.

In the user program, the error codes can be read using the variables assigned within the logic.

The error codes can also be displayed in SILworX.

4.3.4 Digital Inputs for F31 03

The following tables present the statuses and parameters for the input module (DI 20) in the same order given in the SILworX Hardware Editor.

4.3.4.1 Tab **Module**

The Module tab contains the following system parameters:

System parameter	Data type	R/W	Description		
DI Number of	USINT	W	Number of pulsed outputs (supply outputs)		
Pulsed Channels			Coding Description		
			0	No pulsed output planned for SC/OC ¹⁾ detection	
			1	Pulsed output 1 planned for SC/OC ¹⁾ detection	
			2	Pulsed output 1 and 2 planned for SC/OC ¹⁾ detection	
			8	Pulsed outputs 18 planned for SC/OC ¹⁾ detection	
			Pulsed output	its must not be used as safety-related outputs!	
DI Pulse Slot	UDINT	W	Pulse module	slot (SC/OC ¹⁾ detection), set the value to 3	
DI Pulse Delay [µs]	UINT	W	Waiting time for line control (detection of short-circuits or cross- circuits)		
DI.Error Code	WORD	R	Error codes for	or all digital inputs	
			Coding	Description	
			0x0001	Fault within the digital inputs	
			0x0002	FTT test of test pattern faulty	
Module Error Code	WORD	R	Module error code		
			Coding	Description	
			0x0000	I/O processing, if required with errors see other error codes	
			0x0001	No I/O processing (CPU not in RUN)	
			0x0002	No I/O processing during the booting test	
			0x0004	Manufacturer interface operating	
			0x0010	No I/O processing: invalid configuration	
			0x0020	No I/O processing: fault rate exceeded	
			0x0040/ 0x0080	No I/O processing: configured module not plugged in	
Module SRS	[UDINT]	R	Slot number (System Rack Slot)		
Module Type	[UINT]	R	Type of module, target value: 0x00A5 [165 _{dec}]		
¹⁾ SC/OC (SC = short-circuit, OC = open-circuit)					

Table 26: System Parameter for Digital Inputs, Module Tab

4.3.4.2 Tab **DI 20: Channels**

The DI 20: Channels tab contains the following system parameters.

System parameter	Data type	R/W	Description	
Channel no.		R	Channel number, defined by default	
-> Error Code	BYTE	R	Error codes for the digital input channels	
[BYTE]			Coding	Description
			0x01	Fault in the analog input module
			0x10	Short-circuit of the channel
			0x80	Intermittence between pulsed output DO and digital input DI, e.g.,
				 Open-circuit
				 Open switch
				 L+ undervoltage
-> Value [BOOL]	BOOL	R	Input values for the digital input channels	
			0 = input de-energized	
			1 = input energ	ized
Pulsed Output [USINT] ->	USINT	W	Source channel for pulsed supply	
			Coding	Description
			0	Input channel
			1	Pulse of the 1st DO channel
			2	Pulse of the 2nd DO channel
			8	Pulse of the 8th DO channel

 Table 27:
 System Parameters for Digital Inputs, **DI 20: Channels** Tab

4.3.5 Digital Outputs for F31 03

The following tables present the statuses and parameters for the output module (DO 8) in the same order given in the SILworX Hardware Editor.

4.3.5.1 Tab Module

The **Module** tab contains the following system parameters:

System parameter	Data type	R/W	Description		
DO.Error Code	WORD	R	Error codes for all digital outputs		
			Coding	Description	
			0x0001	Fault within the digital outputs	
			0x0002	Test of safety shutdown returns a fault	
			0x0004	Test of auxiliary voltage returns a fault	
			0x0008	FTT test of test pattern faulty	
			0x0010	Output switch test pattern faulty	
			0x0020	Output switch test pattern (shutdown test of the outputs) faulty	
			0x0040	Active shutdown via WD faulty	
			0x0200	All outputs are switched off, total current exceeded	
			0x0400	FTT test: 1st temperature threshold exceeded	
			0x0800	FTT test: 2nd temperature threshold exceeded	
			0x1000	FTT test: Monitoring of auxiliary voltage 1: Undervoltage	
Module Error Code	WORD	R	Module error code		
			Coding	Description	
			0x0000	I/O processing, if required with errors, see other error codes	
			0x0001	No I/O processing (CPU not in RUN)	
			0x0002	No I/O processing during the booting test	
			0x0004	Manufacturer interface operating	
			0x0010	No I/O processing: invalid configuration	
			0x0020	No I/O processing: fault rate exceeded	
			0x0040/	No I/O processing: configured module not	
	· · · - · · ·	_	0x0080	plugged in	
Module SRS	UDINT	R	Slot number (System Rack Slot)		
Module Type	UINT	R	Type of module, target value: 0x00B4 [180 _{dec}]		

Table 28: System Parameter for Digital Outputs, Module Tab

4.3.5.2 Tab DO 8: Channels

The DO 8: Channels tab contains the following system parameters:

System parameter	Data type	R/W	Description		
Channel no.		R	Channel number, defined by default		
-> Error Code [BYTE]	BYTE	R	Error codes for the digital output channels		
			Coding	Description	
			0x01	Fault in the digital output module	
			0x02	Channel shutdown due to overload	
			0x04	Error while reading back the digital outputs	
			0x08	Error while reading back the status of the digital outputs	
Value [BOOL] ->	BOOL	W	Output value for DO channels:		
			1 = output energized		
			0 = output de-energized		
			Pulsed outputs must not be used as safety-related outpu		

Table 29: System Parameters for Digital Outputs, **DO 8: Channels** Tab

5 Operation

The F31 03 controller is ready to operate. No specific monitoring is required for the controller.

5.1 Handling

Handling of the controller during operation is not required.

5.2 Diagnosis

A first diagnosis results from evaluating the LEDs, see Chapter 3.4.1.

The device diagnostic history can also be read using SILworX.

6 Maintenance

No maintenance measures are required during normal operation.

If a failure occurs, the defective module or device must be replaced with a module or device of the same type or with a replacement model approved by HIMA.

Only the manufacturer is authorized to repair the device/module.

6.1 Faults

Refer to Chapter 3.1.1.1, for more information on the fault reaction of digital inputs.

Refer to Chapter 3.1.2.1, for more information on the fault reaction of digital outputs.

If the test harnesses detect safety-critical faults, the module enters the STOP_INVALID state and will remain in this state. This means that the input signals are no longer processed by the device and the outputs switch to the de-energized, safe state. The evaluation of diagnostics provides information on the fault cause.

6.2 Maintenance Measures

The following measures are required for the device:

- Loading the operating system, if a new version is required
- Executing the proof test

6.2.1 Loading the Operating System

HIMA is continuously improving the operating system of the devices. HIMA recommends to use system downtimes to load a current version of the operating system into the devices.

Refer to the release list to check the consequences of the new operation system version on the system!

The operating system is loaded using the programming tool.

Prior to loading the operating system, the device must be in STOP (displayed in the programming tool). Otherwise, stop the device.

For more information, refer to the programming tool documentation.

6.2.2 Proof Test

HIMatrix devices and modules must be subjected to a proof test in intervals of 10 years. For more information, refer to the safety manual (HI 800 023 E).

7

Remove the supply voltage to decommission the device. Afterwards pull out the pluggable screw terminal connector blocks for inputs and outputs and the Ethernet cables.

8 Transport

To avoid mechanical damage, HIMatrix components must be transported in packaging.

Always store HIMatrix components in their original product packaging. This packaging also provides protection against electrostatic discharge. Note that the product packaging alone is not suitable for transport.

9

Disposal

Industrial customers are responsible for correctly disposing of decommissioned HIMatrix hardware. Upon request, a disposal agreement can be arranged with HIMA.

All materials must be disposed of in an ecologically sound manner.

Appendix

Glossary

Term	Description
ARP	Address resolution protocol: Network protocol for assigning the network addresses to hardware addresses
AI	Analog input
AO	Analog output
СОМ	Communication module
CRC	Cyclic redundancy check
DI	Digital input
DO	Digital output
EMC	Electromagnetic compatibility
EN	European norm
ESD	Electrostatic discharge
FB	Fieldbus
FBD	Function block diagrams
FTA	Field termination assembly
FTT	Fault tolerance time
ICMP	Internet control message protocol: Network protocol for status or error messages
IEC	International electrotechnical commission
MAC address	Media access control address: Hardware address of one network connection
PADT	Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX
PE	Protective earth
PELV	Protective extra low voltage
PES	Programmable electronic system
R	Read: The system variable or signal provides value, e.g., to the user program
Rack ID	Base plate identification (number)
Interference-free	Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed <i>interference-free</i> if it does not distort the signals of the other input circuit.
R/W	Read/Write (column title for system variable/signal type)
SB	System bus (module)
SELV	Safety extra low voltage
SFF	Safe failure fraction, portion of faults that can be safely controlled
SIL	Safety integrity level (in accordance with IEC 61508)
SILworX	Programming tool for HIMatrix systems
SNTP	Simple network time protocol (RFC 1769)
SRS	System.rack.slot addressing of a module
SW	Software
ТМО	Timeout
W	Write: System variable/signal is provided with value, e.g., from the user program
Г _{РР}	Peak-to-peak value of a total AC component
Watchdog (WD)	Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.
	module of program enters the Error of or state.

Index of Figures

Figure 1:	Connections to Safety-Related Digital Inputs	10
Figure 2:	Line Control	11
Figure 3:	Connection of Actuators to Outputs	12
Figure 4:	Sample Type Label	14
Figure 5:	Front View	15
Figure 6:	Block Diagram	15
Figure 7:	Sample MAC Address Label	19

Index of	Tables	
Table 1:	Additional Relevant Documents	5
Table 2:	Environmental Requirements	8
Table 3:	Available Controller	13
Table 4:	Blinking Frequencies of LEDs	16
Table 5:	Operating Voltage LED	16
Table 6:	System LEDs	17
Table 7:	Ethernet Indicators	18
Table 8:	I/O LEDs	18
Table 9:	Ethernet Interfaces Properties	19
Table 10:	Network Ports (UDP Ports) in Use	20
Table 11:	Network Ports (TCP Ports) in Use	20
Table 12:	Product Data	22
Table 13:	Specifications for Digital Inputs	22
Table 14:	Specifications for the Digital Outputs	23
Table 15:	Certificates	24
Table 16:	Terminal Assignment for the Digital Inputs	25
Table 17:	Terminal Assignment for the Digital Outputs	26
Table 18:	Power Supply Cable Plug Properties	27
Table 19:	Input and Output Cable Plug Properties	27
Table 20:	Event Description	28
Table 21:	CPU and COM Configuration Parameters, Module Tab	31
Table 22:	Routing Parameters of the CPU and COM	31
Table 23:	Ethernet Switch Parameters	32
Table 24:	VLAN Tab	32
Table 25:	Values for LLDP	33
Table 26:	System Parameter for Digital Inputs, Module Tab	34
Table 27:	System Parameters for Digital Inputs, DI 20: Channels Tab	35
Table 28:	System Parameter for Digital Outputs, Module Tab	36
Table 29:	System Parameters for Digital Outputs, DO 8: Channels Tab	37

Index

block diagram	15
diagnosis	
fault reaction	
digital inputs	11
digital outputs	12
front view	15
line control	11

reset key	21
safe ethernet	
safety function	10
specifications	22
SRS	13
surge	

SAFETY NONSTOP

HIMA Paul Hildebrandt GmbH + Co KG P.O. Box 1261 68777 Brühl, Germany Phone: +49 6202 709-0 Fax: +49 6202 709-107 E-mail: info@hima.com Internet: www.hima.com

(1334)